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Recent developments in the statistical theory of simple fluids in a film geometry near

bulk criticality is reviewed.We summarize results obtained by exact or approximate, but

very accurate methods within Ising model. Particular attention is paid to the properties of

the measurable solvation force and its relation to the structure of the confined system, in

the Ising model given by magnetization profiles. Relevance of the reviewed results for

various physical systems is briefly discussed.
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I. INTRODUCTION

Simple fluids or binary fluid mixtures near criticality belong to the universality

class of the Ising model. If one exploits the mapping between a fluid and the Ising

model, then all the universal properties of a fluid, such as critical exponents or scal-

ing functions for various quantities, can be calculated within this very simple model.

TheOnsager exact solution of the two dimensional (d = 2) Isingmodel allowed to ver-

ify general predictions of the theory of critical phenomena by explicit results. How-

ever, this solution is limited to d = 2 and to the case of vanishing bulk magnetic field

H [1]. Other approaches, such as series expansions or Monte Carlo simulations, can

account for the bulk magnetic field and higher dimension but they are not always ac-

curate enough to infer reliable conjectures [2,3].

In the last few years a considerable progress has been made in developing a tech-

nique of approximate but very accurate calculations in d = 2 Ising model with an ex-

ternal field. The density-matrix renormalization-group (DMRG) technique [4] is

based on the transfer-matrix approach and provides a very efficient algorithm for

construction of the effective transfer matrices for large systems; the effective transfer

matrix is then diagonalized numerically. DMRGmethod was originally introduced to

study the ground state of quantum spin chains [5] and then was extended to study

equilibrium properties of two-dimensional classical lattices [6]. Comparisons with

the exact solutions show that for the case of vanishing bulk magnetic field this
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method is very accurate in a wide range of temperatures, also near the bulk critical

temperature Tc [7,8]. In principle the DMRGmethod should work equally well in the

presence of an arbitrary external field. Therefore, only recently the verification of

predictions of the theory of critical phenomena for two-dimensional systems in the

presence of a bulk field became possible. Despite the limitation to two dimensions

the DMRG results provide a valuable insight into the structure of the scaling func-

tions.

Whereas for the bulk system the theory of critical phenomena is very well estab-

lished, the theory of confined fluids near bulk criticality is far from being complete.

As follows from the finite-size scaling theory [9], the confinement results in shifting

and/or rounding of the bulk critical point. On the other hand, the presence of a surface

leads to spatial variations of the order parameter, which entails new surface critical

exponents; the theory of surface critical phenomena predicts fundamentally different

surface universality classes depending on the type of a surface [10]. The near-critical

properties of a particular confined system follow from combined effects of the finite

size and specific walls-fluid interactions. The main difficulties for the theory arise

from the fact that these combined effects lead to many new phenomena, which in turn

may influence each other. For example, in the case of strongly adsorbing walls the

phenomenon of capillary condensation takes place away from the bulk coexistence

[11] (in the Ising model, which is equivalent to the lattice-gas model of a fluid, capil-

lary condensation takes place for nonvanishing magnetic field). On the other hand,

near the bulk critical point, the Casimir effect arises [12]. The properties of the con-

fined fluid for temperatures between the bulk critical temperature and the critical

temperature associated with the capillary condensation are very special. The fluid is

simultaneously in a critical region of two different critical points, located close to

each other and the capillary condensation can influence the Casimir effect signifi-

cantly. It is more difficult to develop a theory of crossover phenomena, since it is not

clear a priori which degrees of freedom are irrelevant, and typically it is not justified

to make simplifying assumptions as in the bulk theories. In the case of no reliable

general predictions, the role of accurate results obtained in a model system is invalu-

able. Only recently, thanks to the finite-size version of the DMRGmethod applied to

the d = 2 Ising model in a strip geometry with arbitrary surface and bulk magnetic

fields, a significant progress has been made in understanding the confined near-

critical fluids. We stress that properties of confined fluids are of a broad interest; flu-

ids in porous media are important for various applications. Also there is a need to un-

derstand the rich variety of phenomena observed experimentally for fluids adsorbed

in porous solids as Vycor, silica gels or carbon powders. For physics of colloids there

is also a fundamental issue of how a fluid confined between two colloid particles in-

fluences the effective force between them.

In this reviewwe summarize the recent results for the confined near-critical fluids

obtainedwithin the d= 2 Isingmodel in a strip geometry. Emphasis is placed on the ef-

fective force between the confining walls (the excess pressure induced by the con-

finement), as this quantity can be measured in real fluids using the atomic force
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microscope (AFM) or the surface force apparatus (SFA) [13]. Recent results show

the rich variation of the fluid-mediated part of the excess pressure, called the solva-

tion force, when the thermodynamical variables are shifted away from the critical

point either in temperature [14], or in magnetic field [15], or in both, the temperature

and the magnetic field [16]. We compare all the cases studied so far and try to draw

general conclusions concerning the relation between the strength of the solvation

force and the structure of the confined fluid. The expected behavior in d = 3 and the

possible relevance of these results for the experiment and for the behavior of systems

other than simple fluids is mentioned briefly.

II. THERMODYNAMICS FOR A CONFINED FLUID

Consider a confined simple fluid, which is in contact with a reservoir at fixed

chemical potential� and temperature T (Fig. 1). In addition to the bulk term, the grand

thermodynamical potential of confined fluid has an extra contribution, due to the

presence of the confining walls of a surface area A a distance L apart:

� = –pV + �exc (1)

In the above p is the bulk pressure and V is the volume occupied by the fluid. For a slit

geometry an increment in the grand potential is given by

d� = –SdT – Nd� – pdV + 2�dA – fAdL (2)

where � is the wall-fluid surface tension, and fA is the force, which has to be applied

externaly to keep the walls at the distance L. The presence of two extra thermody-

namic fields A and L leads to many new phenomena [11]. We concentrate on two ef-

fects relevant for our study: the phenomenon of capillary condensation and the

excess pressure in the confined fluid.
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A. Capillary condensation: Consider a simple fluid in a gas phase, close to the

bulk coexistence with the liquid, confined between two strongly adsorbing walls. For

sufficiently large L, the last term in (2) can be neglected. If the liquid phase is

metastable in the bulk and the walls are strongly adsorbing, then� �b

l

b

g� , whereas �l

< �g. Here�b

i is the bulk� per unit volume and the superscripts l, g refer to the liquid

and the gas phase respectively. For sufficiently small L, such that

L �
2( )� �

� �

g l

b

l

b

g

�

�
(3)

�l � �g, i.e., the dense phase becomes stable and the dilute phase becomes metastable

between the strongly adsorbing walls. The first-order transition in the confined fluid

is termed capillary condensation and is described by the Kelvin equation, following

directly from (3) within standard thermodynamics
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��co is the chemical potential deviation from the value corresponding to the bulk

phase-coexistence and 	l, 	g are the bulk densities of the respective coexisting

phases. Since for different temperatures T the parameters assume different values,

��co depends on temperature. The capillary condensation line terminates at the (cap-
illary condenstation) critical point (�cL,TcL), whose position on the (�, T) phase space

depends on L and on the wall-fluid interaction [17].

B. Solvation force: As already mentioned above, finite-size contributions to the

grand thermodynamic potential of a fluid, confined between two parallel walls sepa-

rated by a distance L, give rise to a force per unit area, f, between the walls; it can be

expressed as a pressure difference [11]:
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� �

�
(5)

where p is the pressure of the bulk fluid in the reservoir. Clearly, f(L)� 0 when L � �.
The excess pressure f(L) has two contributions: a force arising from a direct interac-

tions between the material of two confining walls and the indirect force associated

with the fluid-fluid and wall-fluid interactions. The latter, called the solvation force,

depends on the thermodynamic state of a fluid, i.e. on (�,T). f (L) can be measured di-
rectly with the AFMor the SFA, although the geometry used in these techniques is not

that of parallel walls. A suitably adapted AFM canmeasure the force between a silica

surface mounted on the cantilever tip of the AFM and a flat surface of a sample im-
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mersed in a fluid [18]. The SFA measures the solvation force for a liquid contained

between crossed mica cylinders [13]. Both techniques provide high force and spatial

resolutions.

Solvation force is relevant for fluid phase equilibria in confined systems, there-

fore, its features have been studied intensively, both theoretically, mostly in mean-

field (lattice or Landau or density functional theory) and experimentally, since early

eighties [11]. It has been found that for simple fluids, confined by identical walls, the

solvation force is attractive for large separations, i.e., fsolv(L) < 0 for large L. fsolv(L)

decays exponentially for L � �. At small wall separations fsolv(L) can oscillate, re-

flecting the same packing effects, which give rise to highly structured density pro-

files. Solvation force is also a good order parameter; it jumps at the first-order

capillary condensation phase transition [17]. At fixed large L and fixed temperature,

below the capillary condensation critical temperature TcL, fsolv(L) should change

abruptly from values appropriate to a “gas” phase, f solv

g
, to a value appropriate to a

dense “liquid” phase, f solv

l . Macroscopic arguments, valid for wide slits, lead to the

following approximations for the force in both phases [17]:

f solv

l (�, L) � –��(	l – 	g) (6)

and

f solv

g
(�, L) � 0 (7)

These approximations imply the jump

�fsolv � f fsolv

l

solv

g

co l g� � �~ ( )�� 	 	 (8)

Criticality in a confined system is associated with vanishing of �fsolv. The Kelvin

equation (4) implies that the magnitude of the jump should decrease in the same fash-

ion as the interfacial tension as T increases at fixed L:

�fsolv � –2�(T)/L (9)

where�(T) is the interfacial tension between coexisting “gas” and “liquid” phases. At
the capillary condensation critical point fsolv exhibits a singular behavior, i.e., (�fsolv/� L)�,T

and (�2fsolv/�L2)�,T diverge at (�cL ,TcL).

More recently, the properties of the solvation force near bulk criticality received a lot

of attention in connection with the, so called, Casimir effect. The finite-size scaling the-

ory predicts that at the bulk critical point of a fluid the solvation force becomes

long-ranged as a result of critical fluctuations [19], a phenomenon which is a direct ana-
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log of the well-known Casimir effect in electromagnetism [20]. The existence of the

long-ranged critical Casimir force should be common to all systems, characterized by

fluctuating quantities with external constraints [12]. As yet, there has been no direct, un-

ambiguous experimental verification of the critical Casimir effect in fluids [12], al-

though recent experiments do provide indirect evidence for its existence [21]. One of the

difficulties is that the predicted leading power lawdecay of theCasimir force at bulk crit-

icality

fsolv(L) ~ kBTcA12(d – 1)L
–d as L � � (10)

is for (bulk) spatial dimension d = 3, of the same form as the force arising from disper-

sion forces. Moreover, in many systems the amplitude may be much smaller than the

corresponding Hamaker constant [12,22]. The Casimir amplitude, A12, is a universal

number for fixed boundary conditions, i.e. for particular type of the walls. However,

its value depends on the surface universality classes of the confining walls [12]. In

this review we will be concerned with two surface universality classes [10]: the ordi-

nary and the normal transition. In the first case, the surface supresses the order pa-

rameter with the result that the system undergoes a second-order phase transition in

the presence of a disordered phase at the surface. The normal transition is themost rel-

evant for experiments on pure fluids or for binary mixtures, and occurs when the sur-

face orders as a result of an external field. A considerable amount of effort has been

spent to calculate the value of the Casimir amplitude for different boundary condi-

tions [12,22] not only becauseA12 is a universal number that governs the asymptotic (L

� �) behavior of the solvation force, but also due to the common belief that the solva-
tion force in critical fluids is the strongest at the critical point. Indeed, since the bulk

fluctuations in fluids are of the largest extent at the critical point, one may expect that

the effect of the external constrains, such as the confining walls should be the largest

exactly at the critical point and moreover it should be independent of the kind of the

external walls. However, explicit results obtained in the Ising model show that the

solvation force is much stronger, in some cases two orders of magnitude, for states

which lie slightly off bulk criticality, as we discuss in detail below.

III. FINITE-SIZE SCALING HYPOTHESIS

Consider a fluid confined in a slit of a width L and subject to the surface fields.

The density profile can be described as a function of the distance from the left wall,

	(z/L), with the distance defined as a fraction of the whole width, 0 � z/L � 1.When L

is increased to L1 at the same thermodynamic state, the shape of the density profile

	(z/L1) is different. It is because in general there are other important length scales,

decribing the shape of the profile. For example, near the wall the density varies on the

length scale of the bulk correlation length �b(T, �). The correlation length shows the

distance from the wall up to which the density of a fluid is influenced by the wall. It is
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because the presence of the wall may be viewed as a perturbation of the fluid, which

extends up to distances ~�b. Far from the critical point �b(T, �) is of a molecular size.
For sufficiently wide slits, the shape of the density profile near each wall is the same

on the molecular length scale for various widths of the slit. However, when L � L1,

then for the same fraction of the film width the density in the two films is different. In

the critical region, the bulk correlation length increases on approaching the critical

point and at the critical point diverges. Again, if the shape of the density profile near

each wall is determined by the bulk correlation length, changing the film width with-

out changing �b(T, �) leads to a different shape of the profile 	(z/L1). Suppose now

that together with the change L � L1 we simultaneously change all the relevant

length scales, such that the ratios between them and the width of the film remain the

same. For example, �b(T, �)� �b(T1, �1) such that L/�b(T, �) = L1/�b(T1, �1). This is
possible in the critical region, where the molecular length scale, fixed once and for

ever, is irrelevant. The remaining length scales, particularly the bulk correlation

length, depend on the thermodynamical state which can be varied. When all the rele-

vant length scales are simultaneously increased by the same factor, then for z/L = z1/L1
we obtain 	(z/L)/	(z1/L1) = const. This is because the whole system is uniformly ex-

panded. The magnitude of the density changes when the termodynamic state is var-

ied, therefore, the whole profile is rescaled under the uniform increase of all the

length scales.

The above scaling hypothesis [1] leads to a prediction that the density profile is

proportional to a scaling function, with the distance measured in either length scale,

for example L or �b. The remaining arguments of the scaling function are the ratios of

the chosen length scale and the other relevant length scales. Hence, the scaling func-

tion describes in fact a whole family of the density profiles for various ratios of the

relevant length scales. The proportionality constant is determined by the ther-

modynamical state and relates the magnitude of the density in the slit to the bulk den-

sity. Similar scaling occurs for other physical quantities. The relevant length scales

are associated with all the scaling fields relevant for the critical behavior. We define

the relevant length scales andwrite the formal expressions following from the scaling

hypothesis after defining the Ising model.

IV. ISING MODEL IN A FILM GEOMETRY

In simple fluids or in binary fluidmixtures the tendency for ordering at the bound-

ary layers is decreased due to the missing neighbors beyond the boundary of the fluid.

At the same time, the walls of the container interact directly with the fluid and this in-

teraction can be modeled by surface fields, which in different systems can be of dif-

ferent strength and range. The theory of bulk critical phenomena [1] says, that all the

microscopic length scales are irrelevant for the universal critical behavior. The only

relevant length scale is the (macroscopic) bulk correlation length. Accordingly, a

simple fluid in a slit in a critical region can be described by the lattice-gas model in a

film geometry with strictly short-range interactions and the interactions between the
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walls and the molecules of the system can be modeled by strictly short range (“con-

tact”) interactions.

The lattice gas model can be mapped onto the Ising ferromagnet, when the site

occupied by the particle is mapped onto spin up and the empty site onto spin down.

The lattice consists of L parallel lattice layers at spacing a � 1, so that the distance be-
tween the layers isN � La. Each layer has A sites, labeled i,j, ..., and at each site there

is an Ising spin variable taking the value�i = �1.We assume only nearest-neighbor in-
teractions of strength J and a Hamiltonian of the form:

H = –J � � � � �i j i i L i

i

L

iii j

H H H� � � ���� 1

1 ( )( )

,

(11)

where the first sum runs over all nearest-neighbor pairs of sites, while the last two

sums run respectively over the first and the L-th layer.H is a bulk field andH1 andHL

are the surface fields. We assume that both surface fields lead to preferential adsorp-

tion of the positively magnetized bulk phase on the inner surfaces of the film (i.e.H1 =

HL > 0) and that the bulk field favors the opposite i.e. negatively magnetized bulk

phase. We takeH1 =HL = h1 J, with h1 > 0. The film has the finite widthN , but we will

take the two-dimensional thermodynamic limit A � �. If one approximates the fluid
by a lattice gas model then the equivalence between lattice gas and the Ising model

follows as usual: the bulk magnetic fieldH of the former is proportional to the devia-

tion of the chemical potential from the bulk phase boundary �c(T) in the latter i.e. H

~ � – �c(T). The lattice-gas model analog of the density in the fluid is related to the

magnetization by 	 = (m + 1)/2.

A. Criticality in films: According to the scaling hypothesis, near criticality vari-

ous physical quantities should obey scaling [1,23]. In the Ising system the scaling

fields, describing the deviation from the bulk critcality are: the reduced deviation

from the critical temperature � = (T – Tc)/Tc and the bulk magnetic fieldH. In the pres-

ence of a wall there is an additional field, namely the surface fieldH1.H1 describes the

crossover between the ordinary H1 = 0 and the normal H1 � � transitions, related to
the nonadsorbing and to the strongly adsorbing walls respectively. The length scales

related to the above scaling fields are: l� � �–�, lH � H–�/� and l1 � H1
1�� /�
, where �, �

and �1 are the critical indices [10]. The bulk correlation length �b reduces to l� in the

case of H = 0, and to lH in the case of � = 0. The remaining length scale, l1, describes
the distance from the wall up to which the system responds linearly to a weak surface

fieldH1 at bulk criticality. Although at the critical point the system no longer responds

linearly to the external field, the boundary layer remains paramagnetic for H1 � 0.

This is due to themissing neighbors, which cause the effective interaction per spin at

the boundary layer weaker than in the bulk. The paramagnetic phase at the boundary

layer does not abruptly change into the critical system in the subsequent layers, but

rather extends smoothly to the distance ~l1 from the wall [24].
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In confined systems the finite size L becomes another relevant length scale. The

combined effect of L and l1 modifies the bulk critical behavior. For the Ising film, that

is of infinite extent in d – 1 dimensions parallel to the walls, true criticality can occur

provided d – 1 � 2 – the lower critical dimension of the corresponding bulk system.

Criticality for finite L lies in the universality class of the bulk d – 1 system. The loca-

tion of the critical point in the (T,H) phase space depends on the type of surfaces.

(a) H1 = HL = 0. In films with free boundaries the Ising symmetry dictates

two-phase coexistence to be atH = 0. For d � 3 and large but finite L, a line of coexis-

tence ends at the critical temperature Tc(L) < Tc. Finite-size scaling [9] predicts the

following expression for the shift of the critical temperature:

(Tc(L,H1) – Tc)/Tc � –L–1/�Xc(H1L
�1/�) (12)

where the scaling function Xc(w) reduces to the amplitude Xc(0) for H1 = 0.

(b) H1 = HL > 0. In this case the phenomenon similar to the capillary condensation

takes place, when the bulkmagnetic fieldH < 0 favours negativelymagnetized phase,

whereas the surface fieldsH1,HL favour the positivelymagnetized phase. The “capil-

lary condensation” of the positively magnetized phase in the film is described by the

analog of the Kelvin equation (4):

–Hco(T) � �(T)/Lm*(T) (13)

where �(T) is the interfacial tension between the coexisting (+) and (–) phases and
m*(T) > 0 is the bulk spontenous magnetization. The presence of thick wetting films

of + spin in the (–) phase gives rise to non-trivial corrections, which shift the conden-

sation line to larger values of |H | [27], nevertheless the Kelvin equation does predict

the correct qualitative behavior of the condensation line at low temperatures. The two

phase coexistence ends in a (capillary) critical point (HcL, TcL). TcL(H1) lies below the

temperature of the bulk critical point Tc. The expression for the temperature shift is

given by (12) and the similar form holds for �Hc � Hc(L, H1) [25]:

�Hc � –L–�/�Yc(H1L
�1/�) (14)

In d = 2 Ising films the situation is similar. Although there can be no true phase transi-

tion for finite L, i.e., nonanalytic behavior of the free energy, specific heat, etc. is

rounded forming maxima, there is still a line of sharp (very weakly rounded)

first-order transitions [26,28]. The rounding in H or in T is expected to be propor-

tional to L–3/2exp(–L�/kBT), where � is the surface tension between coexisting bulk

phases [29]. The pseudocoexistence fieldHco(L) can be identified with the maximum

H0(T) of the free energy f(H) at fixed L, T, andH1 [16,28];H0(T) calculated for L = 200
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and H1 = 10 in [16] is shown in Fig. 2. Determining the pseudocritical temperature

needs additional criteria, since the line H0(T) continues above Tc.

B. Finite-size scaling in the d = 2 Ising film: (a) Magnetization profiles. The

magnetization profile in the d = 2 Ising film is defined as

m(z) � ml � ��l�, z � la � l (15)

where �l denotes a typical spin in the lth row (with l = 1,2, ... , L) corresponding to a

perpendicular distance z (0 � z � L) from the first wall. The magnetization profile can

we written in two equivalent scaling forms, each form suitable in different thermody-

namic conditions:

m(z; L,�, H, H1) � |� |�M
z

L
R R RH H� �

��

�


�

�
�; , ,

1
(16)

m(z; L,�, H, H1) � |H |� �
M

z

L
R R RH H H

� �

�


�

�
�; , ,� 1

(17)

where
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fields H1 = H2 = 10 (normal transition).



R� = L|� |�, RH = L|H |�/�, RH1
= L|H1 |

� �1 (18)

are ratios between the width of the film and the length scales associated with �,H and
H1 respectively. M �

� and M H

� are universal scaling functions for the positive and the

negative values of the scaling fields � and H respectively. Their form is the same in

any system belonging to the Ising universality class up to the nonuniversal metric fac-

tors. For � ! 0,H ! 0, either form of the scaling is appropriate. The (16) is suitable for �
! 0,H = 0, whereas, the other one, (17) – for � = 0,H ! 0. At criticality, � =H = 0, only

two length scales, L and l1 remain, and the scaling takes either one of the two forms

m(z;L,� = 0, H = 0, H1) = z–�/�Mc
z

L
RH;

1

�

�


�

�
� (19)

or equivalently

m(z;L,� = 0, H = 0, H1) = L–�/�Nc
z

L
RH;

1

�

�


�

�
� (20)

where Mc and Nc are universal scaling functions.

(b) Solvation force. The free energy per site of the d = 2 Ising film with two sur-

face fields H1 = HL can be written for large L as

f(L,T, H, H1) = fb + 2fw/L + f*(L)/L (21)

where fb is the bulk free energy, fw is the L-independent surface contribution from each

wall, and f* is the finite-size correction to the free energy. The latter vanishes for L � �.
Such a term gives rise to the generalized force, which is analogous to the solvation

force (5) between the plates in confined fluids [11]

fsolv = –(�f*/�L)H, T, H1
(22)

From the general theory of critical finite-size scaling [9] it follows that the solvation

force should scale

fsolv � L–2F(R�, RH, RH1) (23)

At fixed points � = 0, H = 0 and RH1 = 0 or RH1
= � the scaling function F reduces to

F(0, 0, 0) = A00kBTc(d – 1) or F(0, 0,�) = A�kBTc(d – 1), where A00 and A� are univer-

sal Casimir amplitudes. Within the scaling hypothesis it is not possible to determine

the shape of the scaling function for finite �,H,H1. The renormalization group theory
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also does not allow for finding the scaling functions with sufficient accuracy. The re-

liable results for the universal scaling function F(R�, RH, RH1
) could only be obtained

from exact solutions, which are mainly restricted to two-dimensional systems at van-

ishing bulk field, or by very accurate, approximatemethod. The available results in the

d = 2 systems will be described in the next section.

V. RESULTS FROM THE EXACT AND THE DMRG METHOD CALCULATIONS

Existing results for the Casimir amplitudes and for the scaling function of the sol-

vation force show that these quantities crucially depend on the surface universality

classes of the confining walls. For the Ising model in two dimensions there exist only

two surface universality classes (a) the ordinary transitionH1 = 0, and (b) the normal

transition H1 ! 0, since the boundary is one-dimensional. Thus, for identical walls
there are two possibilites: (a) nonadsorbing wallsH1 =HL = 0 and (b) adsorbing walls

H1 = HL ! 0.
A. Nonadsorbing walls: (a) Temperature dependence of the solvation force at H

= 0. In the case of free boundary conditions, H1 = HL = 0 (ordinary transition) and in

vanishing bulk fieldH = 0, i.e., when a fluid is at the critical density or a binary liquid

mixture is at the critical composition, fsolv as a function of temperature attains a pro-

nounced minimum below the bulk critical temperature Tc. This behavior was con-

cluded from the fact that for free boundaries the scaling function of the solvation

force at vanishing bulk magnetic field satisfies [14].

F00(–R�) = F++(R�) (24)

where F00(R�) � F(R�,0,0) and where F++(R�) � F(R�,0,�) is the scaling function for
strips with fixed boundary conditions (+/+) (normal transition). It follows that in d = 2

the Casimir amplitude for free boundary conditions is the same as for (+/+). These

amplitudes were calculated exactly using conformal invariance [30]: A00 = A++ � A� =

–"/48. At the minimum the amplitude of the scaling function is about 6.6 times the
Casimir value. The minimum of F00 occurs at R� = –1.26, i.e., when the bulk correla-

tion length �b � �(H = 0,�) � A�l� becomes comparable to the half of the film width L ~

2.23�b. The result that theminimumof the solvation force lies below Tcwas explained

by the fact that in a film with free boundaries the critical point is shifted to TcL < Tc.

Thus, it might be expected that the minimum ofF00(R�) should be located atH = 0 and

near T = TcL rather than at Tc [14]. In d = 2 films there is no true criticality but themini-

mum should lie near the pseudocritical point, which is also shifted below Tc.

(b) Bulk field dependence of the solvation force at T = Tc. The renormalization

group theory predicts that near the critical point the “magnetic” scaling field lH � H–� �

is equivalent to the “temperature” scaling field l� � �–�. Therefore, the behavior of the
solvation force as a function ofH at T = Tc should be analogous to the behavior of fsolv

as a function of the temperature at H = 0. The results of the DMRG calculations con-
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firmed this expectation [15]. fsolv(H) attains a pronounced minimum at some small

value Hmin < 0 (see Fig. 3). A new feature is the eveness of the scaling function

F00(RH) � F(0,RH,0), which is expected from the symmetry properties of the Ising

film with free boundaries. This means that the solvation force has a second, symmet-

ric minimum located at Hmin > 0. Locations of the extrema of the solvation force is

consistent with the case (a), i.e., the minima occur when RH � 1.12, i.e., when L �
2.88�b, but now the bulk correlation length is of “magnetic” origin, i.e., �b � �(H, � =
0) � AHlH. The extremum of fsolv(H) as a function of the fieldH at T = Tc is weaker than

the extremum of the function fsolv(T) at H = 0; the value of F00(RH)/kBTc at the mini-

mum is approximately 3.8 times the Casimir amplitude. It is instructive to observe

how the shape of magnetization profiles changes with H. For very weak H, such that

RH << 1, magnetization profiles are almost flat, with a slight difference between the

value of magnetization at the surface and in themiddle part of the film. Also for stron-

ger H, such that RH >> 1, the profiles are flat in the whole film, except from very nar-

row regions close to the walls (see Fig. 4). For these values ofH the solvation force is

small and the scaling function F00(RH) is nearly constant. The rapid change of F00(RH)

takes place when RH ~ 1 and is associated with profiles which are highly nonuniform

across the whole film.
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Figure 3. Scaling function of the solvation forceF(0,RH,0) calculated for 2D Ising films at T = Tc, surface

fields H1 = HL = 0 and several widths L = 100 (circles), 124 (squares), 150 (diamonds).



B. Adsorbing walls: (a) Temperature dependence of the solvation force at H = 0.

For Ising films withH1 =HL > 0 in vanishing bulk fieldH = 0, the extremum of the sol-

vation force as a function of temperature is shifted from Tc, similarly to the case of

free boundaries. However, for adsorbing walls the minimum of fsolv at Tmin lies above

the bulk critical temperature Tc (see (24)). In d = 2 fsolv and its scaling function were

determined by Evans and Stecki [14] for strips with fixed boundary conditions (+/+)

imposed on the spins in the surface layers. (+/+) boundary conditions translates into

H1 = HL = J and corresponds to strongly adsorbing walls, i.e. to the normal transition

fixed point. Using an exact formulae of Au-Yang and Fisher [25] for the free energy

of the Ising strip with two surface fields, H1HL > 0, the authors derived analytic ex-

pressions for fsolv and its scaling function and found that the minimum of the scaling

function F++(R�) � F(R�,0,�) occurs when R� = 1.26. The amplitude at this extremum

is, like in the case of free boundaries, about 6.6 times the Casimir value. Sufficiently

far below Tc, f solv

( )##
decays as exp(–L/�b) as L � �, in agreement with mean-field pre-

dictions [17]. For RH –1 and RH 6 the scaling function is almost zero. We can ob-

serve the same relation between the shape of the magnetization profile and the

behavior of the solvation force as in the case of the nonadsorbing walls, i.e., the mini-
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Figure 4. Magnetization profilesml for the 2D Ising film of width L = 200 at T = Tc,H1 =HL = 0 and sev-

eral values of the bulk field: the top profile corresponds to H = –10–6, then subsequently from

the next to the top to the bottom profile:H = –10–5, –1.1 $ 10–4, –1.3 $ 10–4, –0.001, –0.01.H is
in units of the coupling constant J, z is in units of the lattice constant, magnetization is

dimensionless.
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mum of F++(R�) is associated with highly nonuniform profiles. Although Evans and

Stecki did not calculate profiles for their system, in [31] magnetization profiles for

Ising film with slightly weaker surface fieldsH1 =HL = 0.8 J atH = 0 were presented

for different temperatures above Tc. For this film of the width L = 100 the scaling vari-

ables R� around the minimum of F++(R�) correspond to � between 0.001 and 0.04 and
hence to the most nonuniform profiles.

(b) Bulk field dependence of the solvation force at T = Tc. For d = 2 Ising films

the scaling function of fsolv at T = Tc and nonzero H was obtained using the DMRG

method byDrzewiñski and co-authors [15]. The fsolv(H) was found to be negative (at-

tractive force) for all considered H (Fig. 5). The bulk field dependence of the solva-

tion force at T = Tc is similar to the temperature dependence at H = 0, i.e., fsolv has a

minimum at someHmin < 0. Due to the symmetry breaking boundary conditions, there

is only one minimum. The striking feature is that the strength of the force at Hmin is

very much larger that at the bulk critical point. The minimum of the scaling function

of the solvation force F(0,RH,�) is located at RH � 3.2. At this minimum

F(0,RH,�)/kBTc is approximately 100 times the Casimir amplitude A++.! This result is

opposite to the result found for nonadsorbing walls, whereby the extremum of fsolv(H)

as a function of the field H at T = Tc is weaker than the ekstremum of the function

fsolv(T) at H = 0. The location of the minimum of the solvation force seems to be gov-
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Figure 5. Scaling function of the solvation force F(0,RH,20000) calculated for 2D Ising films at T = Tc of

widths L = 100 (stars), 124 (circles), 150 (squares), 174 (diamonds) and 200 (triangles). Calcu-

lations for each Lwere performed at the suitable value of surface fieldsH1 =HL tomeet the con-

dition RH1
= L| H1 |

�/�1 = 20000 (normal transition).



erned not by the bulk correlation length but rather by the longitudinal spin-spin corre-

lation length �||, since at the minimum L � 2.7 $ �||. �|| is defined from two largest

eigenvalues of the transfer matrix &0 and &1. � ||
�1(�,H;L,H1) = –ln [&1 &0] and de-

scribes the spin-spin correlation in a finite system in a direction parallel to the walls.

ForH around theminimum of the solvation force, �|| is much bigger than �b, due to the

presence of broad interfaces between thin layers of a liquid-like phase near walls and

a gas-like phase in the middle of the film in a crossover regime. Another interesting

feature is that for weakH the solvation force is a linear function of the bulk field. The

finite size scaling implies that in this “linear regime” fsolv very weakly depends on the

width of the film L, i.e., fsolv ~ L–d + �/�with the exponent equal to –0.125 in d = 2. Simi-

larly to the case of free boundary conditions, theminimum of the solvation force is as-

sociated with highly inhomogeneous profile (see Fig. 6).

Several features of the solvation force for adsorbing walls are not obvious. For

example, why the minimum of the solvation force should lie above the bulk critical

temperature Tc or why the solvation force is much stronger for states, which lie

slightly off bulk coexistence, with H < 0 or why for weak H fsolv(T = Tc) is a linear

function of H. Recall that systems with surface fields H1 = HL> 0 are thermodynami-

cally very different from the systems withH1 =HL = 0, due to the phenomenon of cap-

illary condensation that takes place for Hco(T) < 0. The fsolv exhibits a discontinuous
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Figure 6. Scaling functions of typical magnetization profile for 2D Ising films at T = Tc in the crossover

regime for the scaling variable sgn(H)RH = sgn(H)L|H |�� = –3.2, i.e. at the minimum of the sol-

vation force. Calculations for each Lwere performed at the suitable value of surface fieldsH1 =

HL to meet the condition RH1
= L|H1 |

��1 = 20000.



jump on crossing the coexistence (capillary condensation) line and singular behav-

iour at the capillary critical point (HcL, TcL). In order to link theminimum of the solva-

tion force as a function of T at Tmin and H = 0 to the singular behavior at HcL and to

clarify the surprising behavior of the solvation force, a detailed investigation of fsolv as

a function of H for different temperatures above and below Tc was performed using

the DMRG method [16].

For low temperatures (in a regime of capillary condensation) the solvation force

exhibits a very weakly rounded jump from zero to some negative value (see Fig. 7).

As mentioned earlier, a discontinuous jump is characteristic of the solvation force at

a first-order capillary condensation phase transition. The calculated gradients of fsolv

at the three lowest temperatures in Fig. 7 agree with the approximation for the jump of

the solvation force ((8), with 	l – 	g replaced by 2m*(T)). Also, the prediction of the

decrease of the magnitude of the jump in the same fashion as the interfacial tension,

as T increases at fixed L (9) is confirmed. For higher temperatures a change in the be-

haviour of fsolv is observed. As the temperature increases, the jump of fsolv gradually

transforms into a minimum, whose depth decreases and moves monotonically to-

wards H = 0. Even above Tc at the temperature at which fsolv exhibits a minimum as a

function of � for H = 0, the minimum of fsolv as a function of H is still present and its

depth is about 4.8 times bigger than | fsolv(H = 0)|. For temperatures up to the critical

temperature, the magnetization profiles for small | H | are similar to that of a “con-
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Figure 7. Solvation force as a function of the bulk magnetic field H (both quantities in units of J) for an

Ising strip of width L= 200, surface fieldsH1 =H2 = 10 and several reduced temperatures � �
(T – Tc)/Tc �: (+) 0.0135, (�) 0.0063, (') 0.0031,(�) 0.0, (o) –0.0063, (T) –0.0126,
(() –0.0505, (�) –0.0546, (*) –0.1011.



densed” (+) (liquid) phase.Moreover, fsolv still varies linearly withH, as is implied by

the approximate treatment above, although the linear region does shrink as � � 0–.

Thus, the behavior of the solvation (Casimir) force in the neighbourhood of the criti-

cal point is strongly influenced by capillary condensation, which occurs below the

bulk critical temperature Tc. At T slightly below and slightly above Tc, a small bulk

field H < 0, which favours gas, or (–) phase, leads to residual condensation and a sol-

vation force, which is much more attractive (at the same large wall separation) than

that found exactly at the critical point. Again the strongest variation of the solvation

force is associatedwith profiles, which are highly nonuniform across thewhole film.

VI. CONCLUDING REMARKS

As emphasized in the introduction, this article has concentrated on the

near-critical properties of d = 2 Ising films. Exact solutions and the approximate

DMRG method have made a striking input into fundamental understanding of the

near-critical behavior of the solvation force in two dimensions. Do the results ob-

tained in d = 2 have any relevance for d = 3? The general features of fsolv for identical

walls as a function of the temperature at H = 0 seem to be the same in d = 3, for both,

ordinary and normal transitions. The field theoretical renormalization group calcula-

tions to first order in ( for the free energy of a system with ordinary-ordinary bound-
ary condition [32] give the scaling function qualitatively very similar to the

corresponding scaling function for an Ising strip in d = 2. The same similarity was

found in the case of the normal transition. For the (+/+) boundary condition, the scal-

ing function at H = 0 was determined in the mean-field theory. In the mean-field, the

minimum of the scaling function F++(R�) occurs for L ~ 3.7� and the amplitude is
about 1.4 times F++(0) [33,37]. Borjan and Upton [34] have calculated F++(R�) in d =

3, using local functional methods and they find the minimum at L ~ 3.1�, and the am-
plitude at the extremum is about 2.1 times F++(0). For d = 3 there are no published re-

sults for the behavior of the near-critical solvation force in the case of a nonvanishing

bulk magnetic field. We expect that in d = 3, where there is a true coexistence for T <

TcL, fsolv should behave in a similar fashion to what is observed in d = 2, but now the

jumps of fsolv will be discontinuous. Explicit mean-field results for a Landau

(square-gradient) theory support our expectations for T < TcL and for T > TcL, where

fsolv � 2Hm*(T) for H � 0– [35].

We have stressed the connections between the extrema of the solvation force near

the bulk critical point and the high nonuniformity of the magnetization profiles for

values of T andH in the neighbourhood of these extrema. Recall that below the capil-

lary critical point (HcL, TcL), there is a connection between fsolv(L) and the adsorption

)(�), i.e., the excess magnetization; first-order phase transitions are signalled by dis-
continuous jumps in these functions and criticality by divergence in their first and

second derivatives [11].
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Results in d = 2 imply that the solvation force in a real confined fluid at tempera-

tures near Tc and at reservoir densities slightly below the critical value (or composi-

tions slightly away from the critical composition in a binary mixture) should be much

more attractive than the Casimir value for the same L, although the effect may be less

pronounced than in d = 2. Thus, experiments which aim to measure the Casimir force

and future theoretical work should focus on the � and H dependence of fsolv, i.e., the

scaling function, not just the Casimir amplitude.

Solvation forces, induced by the confined fluid, are not restricted to the planar ge-

ometry of the confining walls. The fluid confined between two colloidal particles

should also lead to a solvation force between the confining surfaces, which in this

case correspond to the spherical surfaces of the colloids. For large radii R of the

colloid particles,R/� � �, where� is themolecular diameter of the solvent particles,
the curvature of the surfaces is not of primary importance. The qualitative properties

of the solvation force should be similar as in the case of the planar geometry. Hence,

effective attraction between the colloidal particles should be induced by the fluid con-

fined between them. This attraction should be long-rangedwhen the solvent is near its

critical point, and the magnitude of this force should be particularly large when the

solvent is slightly off the criticality. Effective attraction between the colloidal parti-

cles should affect the equation of state of the colloidal suspension. Measurements of

the second virial coefficient for the suspension, when the solvent is near criticality,

should allow for estimation of the effective force between the colloids [36]. In this

way one could confirm experimentally the theoretical predictions reviewed above.

Finally we note that the existence of a long-ranged, strongly attractive solvation

force between two large colloidal particles immersed in a near-critical fluid can have

ramifications for aggregation or flocculation of the particles [37]. Studies summa-

rized above should indicate where aggregation is potentially the strongest.
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